Парадо́кс Мо́нти Хо́лла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры, основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:
Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор ?
Хотя данная формулировка задачи является наиболее известной, она несколько проблематична, поскольку оставляет некоторые важные условия задачи неопределенными. Ниже приводится более полная формулировка.
читать дальшеПри решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.
Проблема трёх заключенных
Другая формулировка парадокса была представлена Мартином Гарднером в колонке Математические игры, которую он вёл в журнале Scientific American, в 1959.
Трое заключенных A, B и C приговорены к смертной казни, однако известно что один будет помилован. Приговор запрещает сообщать преступнику, будет ли он помилован или нет. A уговаривает охранника сказать, кого из двух других заключенных казнят. Так как вопрос не касается A, охранник решается сообщить, что казнят B. Как изменились вероятности казни A и C? Или, проводя аналогию с проблемой Монти Холла, следует ли A поменяться местами с С, если у него есть такая возможность?
Ключом к пониманию ответа является то, что охранник не сообщает A новой информации о его судьбе, так как A и до сообщения охранника знал о том, что его либо помилуют, либо нет, а хотя бы один из двух других заключенных будет казнён. О судьбе заключенных B и C заявление охранника, конечно, несет информацию (предполагается, что охранник сказал правду). Вероятность того, что помилуют B, становится равна нулю, а вероятность того, что помилуют C, увеличивается. Несимметричность значений вероятности быть казненным для A по сравнению с C объясняется тем, что охранник поделился информацией именно с A.
Таким образом, A делает заключение о том, что C имеет вдвое более высокую вероятность выжить по сравнению с ним. Поэтому, если есть возможность, ему следует поменяться с C
Отрывок из книги С.Лукьяненко, в котором используется парадокс Монти Холла